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29  Abstract

30 To better understand the measurement uncertainties and sampling artifacts of
31  particulate water-soluble organic molecular markers (WSOMMs), three quartz filters
32 were stacked and installed in two collocated samplers (Sampler I and II) to
33 simultaneously collect ambient WSOMMSs. The paired top filters (Qy) loaded with PM3 s
34  were analyzed to determine the duplicate-derived uncertainty of particulate WSOMM
35  concentrations. For several WSOMMs (e.g., levoglucosan) specifically associated with
36  aerosol sources, the uncertainty was well below 20%, which was commonly assumed
37  in previous studies for the analysis of particulate WSOMMs. If the WSOMMs detected
38 in the other two filters (Q» and Q) below Qy were caused by gaseous adsorption, the
39  breakthrough value ([Qss]/([Qs]+[Qss])) can be used to estimate the sampling artifact
40  of particulate WSOMMs due to gaseous adsorption on Q. To understand the influence
41  of acidic and alkaline conditions on the adsorption of gaseous WSOMMs or their
42 precursors on quartz filters, the bottom filter (Qss) of Sampler I was treated with
43 (NH4)2SOs or KOH on different sampling days. From the comparison of the
44 measurement results between chemically treated and untreated Qus» samples, it was
45  inferred that (NH4)2SO4 can increase the formation of isoprene secondary organic
46 aerosol by reactive uptake of the oxidative intermediates; KOH can promote the
47  adsorption of organic acids through neutralization reactions. Future studies are
48  warranted to develop a suitable method for sampling gaseous WSOMMs using
49  chemically treated adsorbents.
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54 1. Introduction

55 As a major component of atmospheric aerosols, water-soluble organic carbon
56 (WSOC) can influence aerosol radiative forcing through absorbing and scattering solar
57  and terrestrial radiation (Malm et al., 1996; Ming et al., 2005) and promoting cloud
58  formation by acting as cloud condensation nuclei and ice-nucleating particles (Novakov
59  and Penner, 1993; Chen et al., 2021). Moreover, the deposition of WSOC provides
60 nutrients for plants and microorganisms on Earth that maintain the balance of the
61  ecosystem (Quinn et al., 2010; Iavorivska et al., 2017; Goll et al., 2023). The heavy
62  metals and toxic organics associated with WSOC also increase the health risks of
63  atmospheric aerosols (Tao and Lin, 2000). WSOC can be released directly by biomass
64  burning (Ding et al., 2013; Du et al., 2014) or can be formed by the atmospheric
65  oxidation of volatile organic precursors and subsequent gas-particle partitioning
66  processes (termed “secondary organic aerosol”, SOA) (Zhang et al., 2007; Kroll and
67  Seinfeld, 2008). Water-soluble organic molecular makers (WSOMMs) are organic
68  compounds with specific origins in the atmosphere and are commonly used to identify
69  the sources of WSOC and particulate matter (PM). In laboratory studies where SOA
70  formation was simulated using a smoke chamber, WSOMMs play a central role in
71  revealing the reaction pathways (Kroll et al., 2006; Ng et al., 2008).

72 A comprehensive understanding of the physicochemical properties, atmospheric
73 transformation and environmental impacts of WSOC depends largely on its
74  characterization (Noziere et al., 2015). Uncertainty analysis for the quantification of
75  PM components, including WSOC and WSOMMs, is necessary to show the variability
76 of measurement results due to sampling, pretreatment, instrumental analysis, etc
77  (Zhang et al., 2024). The uncertainty data are also needed when the simulation results

78  of atmospheric transport models, e.g. for predicting the spatiotemporal distribution of
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79 PM components and SOA formation, are evaluated by comparison with measurements
80  (Aleksankina et al.,, 2019). For PM species with high measurement uncertainty,
81  modeling could aim to obtain a reasonable range instead of a specific value. In addition,
82  the uncertainty data are required for source apportionment using receptor models (Kim
83  and Hopke, 2007). In existing studies, propagation methods (e.g., root sum of squares)
84  have been used to predict the overall uncertainty of the system from different sources
85  of uncertainty (Jaeckels et al., 2007; Dutton et al., 2009b; Feng et al., 2023b). Another
86  method to estimate the uncertainty is to conduct repeated analysis for selected samples
87  (Xie et al., 2017), which only considers the error during chemical analysis. The total
88  uncertainty for the characterization of atmospheric composition is composed of the
89  uncertainties in both sampling and chemical analysis, and can be directly determined
90 by performing collocated sampling. This method has been applied to estimate the
91  concentration uncertainties of bulk PM components (Dutton et al., 2009a; Yang et al.,
92 2021; Xie et al., 2022b), but the duplicate-derived uncertainty for the characterization
93 of WSOMM has rarely been investigated.
94 The known WSOMMs (e.g., 2-methyltetrols) are mostly semi-volatile organic
95  compounds (SVOCs), in which a mass transfer always takes place between the gas and
96  particle phase (Yatavelli et al., 2014; Xie et al., 2014b). In filter-based sampling of
97  WSOMMs in the particle phase, the adsorption of gaseous WSOMMs on filters (“blow
98  on” effect, positive artifact) leads to an overestimation of particle-phase concentrations
99  (Hart and Pankow, 1994; Mader and Pankow, 2001b; Subramanian et al., 2004). Several
100  studies have used a denuder to eliminate organic gasses in the air stream prior to
101  sampling PM on filters (Eatough et al., 2003; Fan et al., 2004; Subramanian et al., 2004),
102 which creates a large potential for volatilization (“blow off” effect, negative artifact) of

103 particulate organic matter (OM) due to the disruption of the gas-particle equilibrium
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104  (Subramanian et al., 2004; Watson et al., 2009). The use of a backup quartz filter
105  downstream of the PM-loaded quartz filter or a Teflon filter has been used in many
106  studies to correct for adsorption of gaseous organics, with the target species being
107 mostly bulk organic carbon (OC) (Watson and Chow, 2002; Subramanian et al., 2004,
108 2009) and non-polar organic compounds (e.g., n-alkanes and polycyclic aromatics)
109  (Mader and Pankow, 2001a; Xie et al., 2014a), while sampling artifacts of WSOMMs
110 were less considered.

111 The existence of gaseous WSOMMs has been reported by integrated gas-particle
112 (G-P) sampling (Limbeck et al., 2005; Bao et al., 2012; Liu et al., 2012; Shen et al.,
113 2018) or online measurements (Williams et al., 2010; Xu et al., 2019; Lv et al., 2022a,
114 2022b). Polyurethane foam (PUF) was the most commonly used adsorbent for sampling
115  gaseous WSOMMs in offline observations (Xie et al., 2014b; Shen et al., 2020;
116  Lanzafame et al., 2021; Qin et al., 2021). However, the extraction process could be
117  affected by the leaching of the PUF material in methanol, leading to low recoveries
118  (approximately 50%). To prove that methacrylic acid epoxide (MAE) is the key
119  intermediate for the formation of 2-methylglyceric acid (2-MG) from isoprene under
120 high NOx conditions, Lin et al. (2013b) collected gaseous MAE using an ice-cooled
121 glass bubbler filled with ethyl acetate. Due to the limited flow rate and absorption
122 efficiency, this liquid absorption method was more suitable for qualitative rather than
123 quantitative purposes. The Semi-Volatile Thermal Desorption Aerosol Gas
124 chromatograph (SV-TAG) was developed for hourly measurements of WSOMMs in the
125 gas and particle phase. In the SV-TAG, a parallel thermal desorption cell equipped with
126  passivated high-surface-area stainless steel (SS) fiber filters (F-CTD) was used for
127 sampling (Williams et al., 2010; Zhao et al., 2013a; 2013b; Isaacman et al., 2014, 2016).

128 One F-CTD was used to directly collect WSOMMs in both the gas and particle phases,
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129 while the other cell was set up to collect only WSOMMs in the particle phase by passing
130 the sample air through an upstream activated carbon denuder. Comparisons between
131 the two cells directly reflected the G-P partitioning of the WSOMMs. However, the
132 resulting particulate fraction (F%) was often greater than 100% (Isaacman et al., 2016;
133 Liang et al., 2023), possibly due to the uncertainties associated with the small sampling
134 volume and chemical analysis.

135 In this study, three quartz filters were stacked and installed in two collocated
136 samplers for sampling WSOMMSs. The measurement results of WSOMMSs on the top
137  filter were used to estimate the uncertainties of analyzing WSOMMs in the particle
138 phase. The remaining two bare quartz filters in one sampler were analyzed to assess
139  positive sampling artifacts due to adsorption of gaseous WSOMMs or their precursors.
140  To investigate the impacts of acidic and alkaline conditions on the adsorption on quartz
141  filters, the bottom filter of the other sampler was soaked in ammonium sulfate
142 ((NH4)2SO4) or potassium hydroxide (KOH) and dried before sampling. The study
143 results unveil the uncertainties in the characterization of WSOMMs in the particle phase,
144 and are beneficial for further studies on sampling and analysis of gaseous WSOMMs.
145 2. Methods

146 2.1 Sampling

147 All filter samples were collected on the rooftop of a six-story building (Binjiang
148 Building) of Nanjing University of Information Science and Technology (NUIST,
149 32.21°N, 118.71°E). The sampling site is located in a suburb in the western Yangtze
150  River Delta of China (Figure la), approximately 20 km north of the city center of
151  Nanjing. The inter-provincial highway G40 and Jiangbei expressway are located about
152 700 m and 1.5 km northwest and southeast, respectively. The petrochemical industry of

153 Yangzi and the chemical industry of Nanjing (SINOPEC) are located 5 — 10 km
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154 northeast of the site. The surrounding area consists mainly of residential buildings, road
155  traffic, and parks (e.g., the Longwangshan scenic area).

156 Three quartz filters (20.3 cm x 12.6 cm, Munktell Filter AB, Sweden) were stacked
157 and placed on each of the two identical samplers (Sampler I and II; Mingye
158 Environmental, Guangzhou, China) to collect ambient air at a flow rate of 300 L min~
159 ' All filters were pre-baked at 550°C for 4 h to remove potential organic contaminants.
160  Twenty-four pairs of collocated samples were collected from August to September 2021
161  during daytime (08:00 — 19:00 GMT+8, N = 12) and nighttime (20:00 — 07:00 the next
162 day, GMT+8, N=12). As shown in Figure 1b, the top filter (Qy) in each filter was loaded
163 with PMas, and the subsequent two filters (Q» and Qss) were used to evaluate the
164  adsorption of gaseous WSOMMs or their precursors on filters. In Sampler I, Qs» was
165 soaked in 1 M (NH4)2SO4 (N=12) or | M KOH (N = 12) and dried at a temperature of
166  120°C before sampling, while Qs in Sampler II was not treated with chemicals. Table
167 S1 shows the sampling date, mean temperature and relative humidity (RH, %), and the
168 type of Qpp treatment ((NH4)2SO4, KOH, and no treatment) of Sampler I and II. Field
169  blanks were taken at every 10™ sample to correct for possible contamination. All
170 samples and field blanks were sealed and stored at —20°C until analysis.

171 2.2 Chemical analysis

172 The method of analysis for WSOMMs in filter samples has been detailly described
173 in our previous work (Qin et al., 2021; Feng et al., 2023a, 2023b). Briefly, one-eighth
174 of each filter sample was spiked with 40 pL of deuterated internal standards (IS,
175  succinic acid-d4, levoglucosan-d7, naphthalene-d8, acenaphthene-d10, phenanthrene-
176 d10, chrysene-d10, and perylene-d12; 10 ng uL!) and ultrasonically extracted twice
177 for 15 min in a mixture of methanol and dichloromethane (v:v, 1:1). The total extract

178  of each sample was then rotary evaporated and blown to dryness with a gentle stream



https://doi.org/10.5194/egusphere-2025-2106
Preprint. Discussion started: 29 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

179 of Na. 60 puL of derivatization reagent [N, O-bis(trimethylsilyl)trifluoroacetamide
180  (BSTFA) with 1% trimethylchlorosilane (TMCS) and pyridine, 5:1] was added and
181  reacted with the dried extracts at 70°C for 3 hours. Prior to instrumental analysis by gas
182 chromatography (GC, Agilent 7890B, USA)-mass spectrometry (MS, Agilent-5977B,
183 USA), the extract solution was cooled to room temperature and diluted with 340 uL of
184  pure hexane. Quantification of the individual WSOMMSs was performed by generating
185  six-point calibration curves and the IS method.

186 Water-soluble inorganic ions and WSOC in filter samples were extracted with
187  ultrapure water (18.2 MQ). Cations (NH4", K*, Ca®" and Mg?") and anions (SO4+*~ and
188  NOs; ) were determined using Metrohm (930, Switzerland) and Dionex (ICS-3000,
189  USA) ion chromatography (IC), respectively. WSOC was analyzed using a total organic
190  carbon analyzer (TOC-L, Shimadzu, Japan). Bulk OC and elemental carbon (EC) of the
191  filter samples were measured using a thermal-optical carbon analyzer (DRI, 2001A,
192 Atmoslytic, USA) according to the IMPROVE-A protocol. Field blanks were analyzed
193 in the same way as the air samples, and the measurement results of all filter samples
194 were corrected.

195 2.3 Data analysis

196  2.3.1 Breakthrough calculation

197 When Q5 and Qp» were considered as adsorbents for sampling gaseous WSOMMs,
198  the WSOMM concentrations in the Q» and Qs samples can be used to calculate the

199  breakthrough (B), which represents the sampling efficiency and is defined as follows:

[Qpp]
=—22 %1 0, 1
200 B [Q0]+ Q05 ] 00 /0 ( )

201 where [Qs] and [Qgps] represent the concentrations of each target compound in Qp and
202 Qms samples, respectively. A B value of 33% has been commonly used as a threshold

203  for excessive breakthrough, and a B value of close to or higher than 50% indicates

8
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204  complete breakthrough (Peters et al., 2000).

205  2.3.2 Calculation of the particulate fractions of WSOMMs

206 Assuming that the target WSOMMs measured in the Qrsamples exist in the particle
207  phase, and those detected in the Q» and Qg samples are present in the gas phase, the
208  particulate fractions (F%) of the individual WSOMMs can be calculated as follows:

[Qr]

— %1009 (2)
[Qf1+[Qb]1+[Qbb] 00%

209 F% =

210  where [Qy] denotes the concentrations of the target compound in Qysamples.

211 2.3.3 Uncertainty assessment

212 The coefficient of divergence (COD) has often been used as a measure of the
213 similarity of chemical species concentrations between pairs of PM samples (Wilson et

214 al., 2005) and is defined as follows:

1

215 COD = (3)

n  Xi1t~Xi2\2
i_l(xi1+xi2)

216  where x;; and x;2 in this work are the concentrations of a particular WSOMM in the i
217  pair of Qysamples from Sampler I and Sampler II, respectively, and » is the number of
218  sample pairs. Values of COD approaching 0 and 1 indicate identity and complete
219  divergence between pairs of collocated samples.

220 The standard deviation of paired differences (SDdifr) and average relative percent
221  difference (ARPD) were used to quantify the absolute and relative uncertainties of
222 individual WSOMMs based on collocated measurement data (Flanagan et al., 2006;

223 Dutton et al., 2009a; Yang et al., 2021). They were calculated as follows:

1
224 SDgis = \/;Z{Ll(xu = Xiz)? 4
225 ARPD = 2yn Buztiel 9009, (5)
n (xi1+x42)

226 3 Results and discussion
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227 3.1 Collocated measurements of Qrsamples

228  3.1.1 Overview of the measurement data

229 The mean concentrations of WSOMMSs and bulk PM» 5 components in collocated
230 Qs samples are summarized in Tables 1 and S2, respectively. Generally, all species
231  showed similar mean concentrations between paired Qy samples with no significant
232 difference (Student’s ¢ test, p = 0.55 — 0.96). Among the isoprene SOA tracers, the mean
233 concentration of 2-methylglyceric acid (2-MG, 4.48 £ 3.15 ng m ) was comparable to
234  observations at the same site in summer 2019 (3.62 + 1.38 ng m>) and summer 2020
235 (4.71 £ 1.77 ng m™>) (Feng et al., 2023b). However, the mean concentrations of 2-
236  methyltetrols (2-MTs, 13.1 = 7.00 ng m™>) and Cs-alkene triols (Cs-ATs, 15.6 = 14.7 ng
237  m>) were significantly (p <0.01) lower than in summer 2019 (21.3 £ 18.2 ng m>, 21.3
238 +26.9 ng m~) and summer 2020 (27.0 £ 21.6 ng m, 36.3 £ 48.0 ng m™). After the
239  implementation of a series of air pollution control measures in China after 2013 (e.g.,
240  the “Air Pollution Prevention and Control Action Plan”), an annual decrease in sulfate
241  concentrations was observed in Nanjing (Xie et al., 2022a). As shown in Table S2, the
242 mean sulfate concentration in this study (5.82 + 2.07 ng m™) is lower than in summer
243 2019 (8.92 + 3.25 ng m™) and summer 2020 (7.67 + 2.92 ng m~) (Feng et al., 2023b).
244 Since sulfate participates in the reactive uptake of isoprene SOA intermediates to form
245  Cs-ATs, 2-MTs, and hydroxy sulfate esters (Surratt et al., 2007a; 2010), the decrease in
246  sulfate concentrations is a possible reason for the attenuation of isoprene SOA
247  formation (Worton et al., 2013; Lin et al., 2013a; Xu et al., 2015). The concentrations
248  of the primary WSOMMs, including biomass burning tracers, saccharides, and sugar
249  alcohols, in this study had similar mean concentrations as in summer 2019 and summer
250 2020 (Feng et al., 2023a). This could be due to the weak emissions from biomass

251  burning in summer with little annual variation (Zhang et al., 2008; Li et al., 2020; Fu et

10
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252 al., 2023), and sugar polyols mainly originate from biogenic sources during the growing
253 season with minimal influence from human activities (Simoneit et al., 2004; Jia and
254  Fraser, 2011; Kang et al., 2018).

255  3.1.2 Duplicate-derived uncertainty

256 Figures 2 and S1 show comparisons of the concentrations of selected typical
257  WSOMMs and other compounds in collocated Qy samples. The scattering data of all
258  identified WSOMMs fell along the identity line with strong correlations (> 0.90, p <
259  0.01). The COD values of all species were below 0.20, indicating a high similarity
260  between the collocated measurements (Krudysz et al., 2008). Yang et al. (2021) found
261  that the median concentrations of bulk PM2 s components were negatively correlated
262  with the corresponding ARPD values. In this work, such dependence of measurement
263  uncertainties on ambient concentration was not observed for WSOMMs, possibly due
264  to the high sensitivity of GC-MS analysis for derivatized WSOMMs. The SDgifr and
265  ARPD values shown in Figures 2 and S1 are the uncertainties for particulate WSOMMs
266  based on direct measurements, which are rarely reported. When using measurement
267  data of particulate WSOMMs for receptor-based source apportionment (e.g., positive
268  matrix factorization), uncertainty data are a required input and are often estimated using
269  a propagation method (Hemann et al., 2009; Dutton et al., 2009a; Aleksankina et al.,
270 2019), where an error fraction of 20% was usually assumed (Zhang et al., 2009).
271  However, the ARPD values of several WSOMMs (e.g., levoglucosan, 2-MTH and
272 mannosan) specifically related to PM sources were close to or even below 10% (Figures
273 2 and S1), and overestimation of uncertainties may lead to biased source apportionment
274  results (Paatero and Hopke, 2003).

275 In previous studies, meso-erythritol was often used as a surrogate for the

276  quantification of all isoprene SOA tracers (Ding et al., 2008; Hu et al., 2008; Lin et al.,

11
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277 2012; Feng et al., 2023b). Due to differences in molecular structures, MS fragments,
278  and signal intensities, quantification of target compounds using surrogates can be
279  subject to errors. As shown in Figure S2a and c, the quantification results of 2-MG and
280 2-MEH using authentic standards and meso-erythritol (surrogate) are strongly
281  correlated (r =0.99, p < 0.01). But the mean concentration of 2-MG quantified using
282  the authentic standard was 14.9% higher than that using the surrogate (Figure S2 b).
283 The difference in the quantification of 2-MEH between using the authentic and
284  surrogate standards was not apparent, which was attributed to the similarity of the
285  structure of meso-erythrol and 2-MEH. To obtain more accurate measurement results
286  of WSOMMs, authentic standards or at least surrogates with similar structures should
287  be used for quantification.

288 3.2 Adsorption of gaseous WSOMMSs or their precursors on untreated filters

289 Owning to the extremely low vapor pressures of the biomass burning tracers,
290  saccharides, and sugar alcohols (Qin et al., 2021), these species were not detected in
291 the Qp and Qsp samples from Sampler II or showed similar concentrations as the field
292 blanks. Therefore, only the measurement results of isoprene SOA tracers and
293 dicarboxylic acids in Qp and Qs samples are presented and discussed. When Qp and
294  Qu» were considered as adsorbents for sampling gaseous WSOMMs, the mean F%
295  values of isoprene SOA tracers and dicarboxylic acids are well above 50% (Table 2).
296  However, significant amounts of the target species were observed in the Qp and Qpp
297  samples, indicating that the quartz filter can adsorb semi-volatile WSOMMs in the gas
298  phase or their precursors that undergo heterogeneous reactions at the filter surface. After
299  the sampling air flowed through Qrand Q, of Sampler II, the vapor pressures of the
300 target compounds or precursors decreased significantly, resulting in lower

301  concentrations in Qp» samples than in Q, samples (Table 2).

12
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302 Qin et al. (2021) collected particulate and gaseous WSOMMSs at the same
303  observation site by passing air samples through stacked Qs and Q, and a PUF plug.
304  Similar to this study, Qr was used to determine the particulate WSOMMs. Assuming
305  that the WSOMMs detected in filters and PUF after Qy are present in the gas phase,
306  Figure 3 compares the concentrations of isoprene SOA tracers in different sampling
307  matrices of this study and Qin et al. (2021) during the same period (August — September)
308  of the year. In Figure 3a, the mean Qrand Q5 concentrations of 2-MTs (13.5 = 7.16 ng
309 mand 1.61 + 1.53 ng m3; Table 2) and Cs-ATs (16.0 = 14.7 ng m=, 0.24 + 0.13 ng
310  m™) are lower in this study than in Qin et al. (2021) (2-MTs 20.7 £ 17.6 ng m>, 3.96 +
311 5.41ngm>; Cs-ATs 22.0 £26.5 ng m~>, 1.18 = 1.42 ng m™>). However, the Qp» samples
312 in this study had comparable or even higher mean concentrations of 2-MTs (0.75 + 0.87
313 ngm™)and Cs-ATs (0.23 + 0.29 ng m>) than the PUF samples (2-MTs 0.99 + 0.75 ng
314 m; Cs-ATs 0.065 + 0.062 ng m~; Figure 3c). Figure S3 shows that the F% of 2-MTs
315 and Cs-ATs are similar in this study and in Qin et al. (2021) under comparable
316  meteorological conditions, although the sampling year and sampling media are different.
317  Thus, there is no appreciable difference in the gas-particle partitioning results between
318  the use of quartz filters and PUF for sampling isoprene SOA tracers in the gas phase.
319  Considering the higher recoveries in the measurement of isoprene SOA tracers in filter
320  samples (106 = 1.90%) than in PUF samples (about 50%), which are largely due to the
321  elution of PUF materials, quartz filters can be used instead of PUF for sampling. The
322 SV-TAG method proposes that SS fiber filters are suitable for sampling SVOCs in the
323 gas phase if their surface area is large enough (Zhao et al., 2013b). The specific fiber
324  surface area of quartz filters (~130 cm? cm™) is slightly lower than that of SS fiber
325 filters (~160 cm? cm™2) (Mader and Pankow, 2001b; Zhao et al., 2013b), but the

326  diameter of quartz filters (=90 mm) used for ambient sampling can be much larger.

13
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327 Without considering the heterogeneous reactions on the filter surfaces, no
328  excessive breakthrough (B < 33%) was observed for 2-MG and 2-MTs based on the
329  measurement results of the Qp and Qg samples from Sampler II, but the B values of Cs-
330  ATs and dicarboxylic acids are close to 50% (complete breakthrough). These results
331  suggest that bare quartz filters are not effective adsorbents for sampling Cs-ATs and
332 dicarboxylic acids in the gas phase. Since adsorption of gaseous WSOMMs on quartz
333 filters is a potential source of artifacts when sampling particulate WSOMMs (Arhami
334 et al., 2006), previous studies have adjusted the particulate concentrations of organic
335 compounds by subtracting the amounts on Q, samples from those on Qysamples ([Q/]—-
336 [Qs]) (Mader and Pankow, 2000, 2001a, 2001b). In this approach, the amounts of
337  gaseous organic compounds adsorbed in Qrand Q» samples are assumed to be equal,
338  and evaporation of the particle phase is neglected. However, Q, is exposed to lower
339  concentrations of gaseous WSOMMs before Qsreaches equilibrium with the air sample
340  (Mader and Pankow, 2001b; Watson et al., 2009). Then, the [Q/]-[Q»] method may lead
341  to an overestimation of particulate concentrations unless the sampling time is long
342 enough (Hart and Pankow, 1994; Subramanian et al., 2004).

343 In Sampler II of this study, a third bare quartz filter (Qs») was added after Qrand
344 Qp, and the B values given in Table 2 also reflect the relationship between the amounts
345  of gasecous WSOMMs adsorbed on two consecutive quartz filters. As such, it is more
346  appropriate to estimate the amounts of gaseous WSOMMs adsorbed on Qr([Q/*]) by
347  assuming that the B value of Qrand Qs ([Qs)/([Q/*]+[Qs])) is identical to that of Q and
348  Qpp. In this case, the artifact-corrected particulate concentrations of the WSOMMs can
349  be calculated as [Q/-[Qf*]. As Figure 4 shows, the [Q/], [Q/-[Qs], and [Q/-[Q/*]
350  values of all six species have similar time series. However, except for Cs-ATs, the mean

351  [Qy] and [Qf]-[Qs] values of 2-MG, 2-MTs, and dicarboxylic acids are 33.8% — 78.1%

14



https://doi.org/10.5194/egusphere-2025-2106
Preprint. Discussion started: 29 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

352 and 11.1% — 40.3% times higher than that of [Q/]-[Qs*]. Since the volatilization of
353  particulate WSOMMSs in Qr samples was not known, the values of [Q/]-[Q/*] can be
354  regarded as a lower limit for filter-based measurements of particulate WSOMMs.

355 3.3 Adsorption of gaseous WSOMMs or their precursors on treated filters

356 The sampling efficiency of gaseous WSOMMs can be improved by treating the
357  sampling medium with chemicals. Bao et al. (2012) collected gaseous organic acids
358  using two tandem annular denuders coated with potassium hydroxide (KOH), and
359  obtained a sampling efficiency up to 98% for short-chain dicarboxylic acids (Cz — Cs).
360  Kawamura and Kaplan (1987) and Bock et al. (2017) used KOH-impregnated quartz
361 filters to collect motor vehicle emissions, and confirmed that engine exhaust is a source
362 of dicarboxylic acids. In this study, the Qs on Sampler I was treated with (NH4)2SO4
363  or KOH on different sampling days (Table S1). Table 3 compares the measurement
364  results of the Qp and (NH4)2SOs-treated Qp, samples from Sampler I with those of the
365  collocated samples from Sampler II. The mean concentrations of 2-MTs and Cs-ATs in
366  the treated Qu» samples from Sampler I were 3.34 £2.64 ngm>and 3.92£3.25ng m>>,
367  respectively, which were 2.83 and 22.1 times higher than those in the untreated Qs
368  samples from Sampler II. While the collocated Q, samples had similar mean
369  concentrations of 2-MTs and Cs-ATs.

370 Referring to the results of the chamber study, 2-MTs and Cs-ATs are formed by the
371  reactive uptake of epoxydiols of isoprene (IEPOX) through the acid-catalyzed ring
372 opening (Surratt et al., 2006, 2010). The coated (NH4)2SO4 on Qps can absorb water
373 vapor and act as an acid to promote the hydrolysis of IEPOX on filters to form 2-MTs
374  and Cs-ATs. In addition, inorganic sulfate on filters can also react with gaseous IEPOX
375  as a nucleophile to form organosulfate esters and oligomeric forms of 2-MTs and Cs-

376  ATs. As shown in Table S2, Qp and untreated Qs» samples from Sampler II also contain
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377  acertain amount of inorganic sulfate due to the heterogeneous reactions of SO (Pierson
378 et al., 1980; Cheng et al., 2012), which are favored by the reactive uptake of [EPOX.
379 The concentrations of SO4*~ and NH4" in the Q; samples from Sampler I (SO4*- 0.13 +
380 0.056 pg m>; NHs" 0.033 £ 0.026 pg m>) and 1T (0.10 + 0.040 pg m3, 0.024 + 0.022
381  pgm™)were comparable, indicating that there was no significant transfer of (NH4)>SO4
382 from treated Qps to Qp on Sampler I during sampling. This also explains the similar
383 concentrations of 2-MTs and Cs-ATs in Q, samples between Sampler I and II. During
384  the derivatization process of sample analysis, the organosulfate and oligomeric forms
385  of 2-MTs and Cs-ATs can be converted to their monomeric forms by excess BSTFA
386 (Lin et al., 2013a; Xie et al., 2014b); the conventional GC/EI-MS method also
387  overestimates the concentrations of 2-MTs and Cs-ATs due to the thermal
388  decomposition of less volatile oligomers and organosulfates (Lopez et al., 2016; Cui et
389  al., 2018). Consequently, 2-MTs and Cs-ATs detected in the Qp and Qps samples from
390  both Sampler I and IT were likely generated by heterogeneous reactions of gaseous
391  IEPOX on quartz filter surfaces rather than by direct adsorption of gaseous molecules.
392 Unlike 2-MTs and Cs-ATs, 2-MG in (NH4)2SOs-treated Qp» samples (0.16 + 0.12
393  ng m~; Table 3) did no show higher mean concentration in comparison to that in
394  untreated Qu» samples (0.24 = 0.16 ng m™). 2-MG is formed by the acid-catalyzed ring
395  opening of MAE, an oxidation product of isoprene under high NOx conditions (Lin et
396  al., 2013b). Surratt et al. (2007b) demonstrated that the formation of 2-MG is almost
397  unaffected by changes in the acidity of the aerosol. Thus, 2-MG is stable in acidic
398  aerosols and an equilibrium between the gas and particle phase could be achieved. The
399  mean concentrations of succinic acid, glutaric acid, and adipic acid in (NH4)2SOs-
400  treated Qps samples were 11.26%, 57.4%, and 74.1% higher, respectively, than those in

401  untreated Qp» samples (Table 3). One possible explanation is that (NH4)2SOy4 is highly
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402  hygroscopic and promotes the dissolution of gaseous dicarboxylic acids by moisture
403  absorption (Chen et al., 2021) or facilitates the heterogeneous formation of dicarboxylic
404  acids (Yli et al., 2013; Bikkina et al., 2017).

405 Table 4 shows that the mean concentrations of 2-MG (1.92 + 1.38 ng m™), succinic
406  acid (7.05 £ 5.39 ng m™), glutaric acid (1.50 £ 1.71 ng m~), and adipic acid (1.16 +
407 1.20 ng m™) in KOH-treated Qs samples from Sampler I are up to 13.7 times higher
408  than those in untreated Qp, samples from Sampler II. This can be explained by the
409  formation of low-volatility organic compounds by neutralization reactions of gaseous
410  organic acids on the surface of KOH-treated Q. As described in section 3.2, the
411  breakthrough in the sampling of gaseous 2-MG (24.1 + 10.2%) and 2-MTs (28.1 £
412 13.1%) is not excessively high when bare quartz filters are used. However, their
413 concentrations in KOH- and (NH4)2SOs-treated Qp» samples increased substantially
414  compared to untreated Qp, samples (Tables 3 and 4), indicating that a low B value does
415  not guarantee high sampling efficiency of gaseous WSOMMs or their precursors.
416  Owing to the transfer of KOH from treated Qs to Qp on Sampler I, the mean
417  concentrations of 2-MG and dicarboxylic acids in Q» samples from Sampler I are 1.84
418  —2.26 times higher than those in Sampler II (Table 4). The reactive uptake of organic
419  acids in Qp samples from Sampler I during KOH treatment periods also led to increased
420  WSOC and OC concentrations, and the transferred KOH on Qp accelerated the
421  heterogeneous formation of SO4>- and NOs~ (Table S2).

422 4. Implications and conclusions

423 In this study, the uncertainties for the concentrations of particulate WSOMMs (5.85%
424 - 19.9%) were determined by direct measurements of collocated Qy samples. The
425  uncertainties for several compounds (e.g., levoglucosan and 2-MTH) were well below

426  the default value (~20%) commonly used in previous studies. The uncertainty data
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427  presented in this work are useful for future modeling and field studies on atmospheric
428  transport, transformation, and source apportionment of water-soluble organic aerosols.
429 When the bare Qp and Qs are considered as adsorbents for sampling gas-phase
430  WSOMMs, the F% values obtained in this study are comparable to those obtained at
431  the same sampling site using PUF as adsorbent. Based on the breakthrough of gaseous
432 isoprene SOA tracers and dicarboxylic acids calculated from the measurement results
433 of Qs and Qu» samples, a new method was developed to correct for the adsorption of
434  gaseous organics on PM-loaded filter samples (Qy), which accounts for the decrease in
435  gas-phase concentrations after the air sample passes through Qy The adjusted Qr
436 measurements could be used as a lower limit for the particulate concentrations of
437  WSOMMs.

438 By comparing the concentrations of isoprene SOA tracers and dicarboxylic acids
439  between (NH4)2SO4-/KOH-treated and untreated Qp» samples, it was inferred that
440  (NH4)2SO4 on quartz filters can promote the heterogeneous formation of 2-MTs and Cs-
441  ATs by reactive uptake of IEPOX, and KOH can increase the adsorption of gaseous
442  organic acids on quartz filters by neutralization reactions. Due to the influence of
443 surface reactions, WSOMMs detected in adsorbents associated with SOA sources (e.g.,
444  2-MTs) may not indicate their existence in the gas phase. In further studies, chemically
445  treated adsorbents can be developed for sampling gaseous WSOMMs with specific
446  functional groups.

447
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Table 1. Mean concentrations of WSOMMs (ng m>) in Qysamples from Sampler I

and IIL.
Species Abbreviation Sampler I Sampler 11 Means of collocated
samples
Isoprene SOA tracers

2-methylglyceric acid 2-MG 439+£329% 4.57+3.05 448 +£3.15
2-methylthreitol ® 2-MTH 3.57+1.83 3.82+1.93 3.69+1.87
2-methylerythritol 2-MEH 9.20+5.13 9.67+5.29 9.43+5.18
2-methyltetrols 2-MTs*¢ 12.8+6.91 13.5+7.16 13.1+7.00
cis-2methyl-1.34- 0 Govmag 3472305 370£3.12 3584312
trihydroxy-1-butene

3-methyl-2,3,4- MTHB 214+ 1.82 2254185 219+ 183
trihydroxy-1-butene

trans-2-methyl-1.34- 0o MTHB 10,0 £ 105 10.6+10.3 103+ 10.4
trihydroxy-1-butene

Cs-alkene triols Cs-ATs¢ 152+ 14.9 16.0 + 14.7 15.6 +14.7

Dicarboxylic acid
succinic acid 20.8+13.9 22.6+15.4 21.7+14.5
glutaric acid 8.31+5.56 8.63 £4.98 8.47+5.20
adipic acid 5.93+3.45 6.59 +3.94 6.26 + 3.60
Biomass burning tracers
galactosan 0.36 +£0.51 0.42 +0.63 0.39+0.57
mannosan 1.68 £ 1.04 1.78 + 1.18 1.73 £ 1.11
levoglucosan 21.5+194 22.9+20.2 222+19.8
Saccharides
fructose 12.5 + 8.87 13.6 +8.99 13.1 +8.82
glucose 9.29 +8.41 10.2 +£9.04 9.75 + 8.65
sucrose 28.0+32.8 29.7+33.7 28.9+33.2
lactose 1.61 +1.37 1.69 +1.42 1.65+1.40
mannose 0.70 £ 0.61 0.79 + 0.64 0.75+£0.62
Sugar alcohols

arabitol 5.97 £4.66 6.66 +4.51 6.31+4.56
pinitol 1.07 +£0.82 1.15+0.85 1.11+0.84
mannitol 16.9 +23.0 18.8+23.4 17.9+23.1
sorbitol 1.00 £ 0.77 1.10£0.72 1.05+0.74
inositol 2.11+1.03 2.25+1.09 2.18+1.04
chiro inositol 0.43 + 041 0.47 +0.41 0.45+0.41

@ Standard deviation; ® compounds were quantified using meso-erythritol as the surrogate, and other
compounds were quantified using authentic standards; ¢ sum of 2-MTH and 2-MEH; ¢ sum of trans-

MTHB, MTHB, and cis-MTHB.
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Table 2. Mean concentrations (ng m™), B, and F% of isoprene SOA tracers and
dicarboxylic acids based on the measurement results of filter samples from Sampler II.

Species Qr Qs Qs B F%
Isoprene SOA tracers
2-MG 4.57+3.05 0.85+0.72 0.20+0.13 24.1+10.2 81.7+9.98
2-MTH 3.82+1.93 0.62+0.52 0.16£0.16 21.4+11.9 83.9+9.36
2-MEH 9.66 +£5.29 1.13+1.16 0.57+0.70 3224133 86.1 +10.1
2-MTs 13.5+7.16 1.74 +1.63 0.73 £ 0.86 28.1 +13.1 85.5+9.62
cis-MTHB 3.70+£3.12 0.053 +£0.051  0.035+0.025 424+13.3 95.9+4.38
MTHB 2.25+1.85 0.064 +0.035 0.030+0.016 32.8+8.00 92.7+6.71
trans-MTHB 10.6 £10.3 0.16 +0.21 0.099 +0.074 42,6 +13.5 95.2+6.49
Cs-ATs 16.0 +14.7 0.29+0.29 0.17+0.11 40.0+11.7 94.9 +£5.80
Dicarboxylic acids

succinic acid 22.6+15.4 6.17+3.76 3.66+2.18 39.7+11.2 68.1 £8.22
glutaric acid 8.63+4.98 236+ 1.46 1.18 £ 0.38 36.4+12.1 69.4+7.39
adipic acid 6.59 +3.94 1.10+0.70 0.68 +0.39 40.0 +13.8 77.6 +6.51
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Table 3. Comparisons of the mean concentrations (ng m~) of isoprene SOA tracers and
dicarboxylic acids in the Qp and (NH4)2SOs-treated Qps» samples from Sampler I and
the collocated untreated samples from Sampler II.

. Sampler 1 Sampler 11
Species
Q» Qs Qus/Qp Qs Qs Qus/Qp

Isoprene tracers

2-MG 0.71+0.73 0.16+0.12 0.38+0.25 1.01 £0.84 0.24+0.15 0.36+0.23

2-MTH 0.54+0.54 0.88+0.64 2.40+1.82 0.70 £ 0.61 0.19+£0.20 0.30£0.20

2-MEH 1.19+129 246+2.01 3.00+1.90 1.42+1.44 0.68+0.89 0.49+0.24

2-MTs 1.73+1.78 334+2.64 0.59+0.48 2.13+2.00 0.87+1.08 0.42+0.23

cis-MTHB 0.035+0.024 1.05+0.90 30.7+15.1  0.061+0.064 0.036+0.029 0.83+0.54

MTHB 0.046+0.025 0.62+0.64 11.5+7.74 0.067+0.039 0.031+0.018 0.50+0.19

trans-MTHB ~ 0.10+0.080 2.25+1.75 21.9+104 0.20+0.27 0.10+0.078 0.81 +0.45

Cs-ATs 0.19+0.13  3.92+325 20.3+9.87 0.33+0.37 0.17+0.12  0.72+0.38
Dicarboxylic acid

succinic acid ~ 7.07+3.86 4.67+5.27 0.75+0.68 8.07+4.17 4.18+2.76 0.63+0.26

glutaric acid 251+1.55  1.99+127 1.06+0.72 2.97+2.04 1.57+1.13  0.67+0.62

adipic acid 1.08+0.59 1.23+129 141+1.31 1.29+0.74 0.71+041 0.64+0.31
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Table 4. Comparisons of the mean concentrations (ng m~) of isoprene SOA tracers and
dicarboxylic acids in the Q, and KOH-treated Qp» samples from Sampler I and the
collocated untreated samples from Sampler II.

. Sampler I Sampler 11
Species
Q» Qup Qu/Qo Q» Qup Qus/Qw

Isoprene tracers

2-MG 1.74+135 192+138 1.92+1.84 0.62+0.51 0.14+0.061 0.39+0.32

2-MTH 046047 0.15+£0.11 0.92+0.95 0.51+£0.39 0.13+0.11 0.31+£0.24

2-MEH 0.93+1.00 0.38+0.25 0.81+1.00 0.78 + 0.60 0.43+0.37 0.60+0.49

2-MTs 1.39+144 047+030 0.84+0.94 1.29+0.93 0.56+048 0.47+0.37

cis-MTHB 0.068 +0.062 0.070 +0.090 1.60+2.72  0.038+0.020 0.031+0.021 0.80+0.25

MTHB 0.056 +0.037 0.024 +0.027 0.92+1.26  0.054+0.032 0.029+0.013 0.75+0.74

trans-MTHB 0.10£0.12 0.033+0.051 0.92+1.12 0.11£0.079 0.091+£0.076 0.91+0.37

Cs-ATs 022+0.16 0.12+0.15 0.92+1.30 0.21+£0.12 0.15+0.11 0.82+0.35
Dicarboxylic acid

succinic acid 16.0+11.4 7.05+539 0.62+0.63 490+2.72 3.08+1.18 0.81+£0.93

glutaric acid 3.81+£334 150+1.71 0.43+0.39 2.06 +1.03 1.14+£ 034 0.83+£0.93

adipic acid 291+£563 1.16+1.20 0.67+0.57 1.60 +2.37 0.71+£043 1.08+1.62
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Figure 1. Location of the sampling site (a) and scheme of collocated sampling with

three stacked quartz filters (b)
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Figure 2. Comparisons of the concentrations of typical WSOMMSs in collocated Qr
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Figure 3. Comparisons of mean concentrations of 2-MTs and Cs-ATs in (a) Qy, (b) Qs,
and (c¢) Qus/PUF samples between this study and Qin et al. (2021).
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Figure 4. Comparisons of particulate concentrations of isoprene SOA tracers and
dicarboxylic acid before and after gaseous adsorption corrections in summer 2021 (N:

nighttime; D: day time).
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